Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Syntheses and structures of $[Me_2Si{As(P^tBu)_3}_2]$ and $[(CyP)_3SiMe_2]$ (Cy = cyclohexyl, C₆H₁₁)

Wesley T.K. Chan, Felipe García, Mary McPartlin, Rebecca L. Melen, Dominic S. Wright*

Chemistry Department, Lensfield Road, Cambridge CB2 1EW, UK

ARTICLE INFO

Article history: Received 26 October 2009 Received in revised form 11 December 2009 Accepted 14 December 2009 Available online 21 December 2009

Keywords: Arsenic Heterocycle Silicon X-ray

1. Introduction

Heterocyclic anions of the type $[(RP)_n E]^-$ (where E = P, As, Sb; n = 3 or 4) are an interesting, and at present relatively little-studied, class of potential ligands for a range of metals and non-metals [1–3]. We have found that simple access to the As and Sb derivatives is offered by the direct reactions of alkali metal primary phosphides [RPHM] (M = an alkali metal) with the series of reagents [E(NMe₂)₃] (Scheme 1, step 1) [1–3]. These reactions are difficult to control in the case of the Sb heterocycles $[(RP)_nSb]^-$ owing to the relative weakness of P-Sb bonds and the resulting thermal instability (Scheme 1, step 2). For example, the five-membered, heterocyclic anion $[(CyP)_4Sb]^-$ (Cy = cyclohexyl) decomposes at temperatures above *ca*. 0 °C into the Zintl ion [Sb₇]^{3–} and the cyclic phosphane [CyP]₄ [4]. This type of main group dehydrocoupling reaction can be seen to be driven thermodynamically by the strength of the P-P single bond, which has the highest homoatomic bond energy between of any of the group 15 elements (ca. 201 kJ mol⁻¹) [5]. The phosphorus counterparts $[({}^{t}BuP)_{4}P]^{-}$ have been obtained by the in situ reactions of ^tBuPCl₂ and PCl₃ with Na metal in THF (Scheme 2) [6].

A particular interest in the coordination chemistry of the $[(RP)_nE]^-$ anions is their potential to deliver group 15 atoms, by the reductive elimination of cyclic phosphanes. Our studies in this area have focused on the coordination behaviour and reactivity of the readily prepared $[({}^{t}BuP)_{3}As]^-$ anion (1) [7]. Disappointingly, reactions of **1** with a range of main group metals results in oxidative

Corresponding author.
 E-mail address: dsw1000@cam.ac.uk (D.S. Wright).

ABSTRACT

The reaction of the anion $[({}^{t}BuP)_{3}As]^{-}(1)$ with Me₂SiCl₂ results in nucleophilic substitution of the Cl⁻ anions, giving the di- and mono-substituted products $[Me_{2}Si\{As(P^{t}Bu)_{3}\}_{2}]$ (**3a**) and $[Me_{2}Si(Cl)\{As(P^{t}Bu)_{3}\}]$ (**3b**). Analogous reactions of the pre-isolated $[(CyP)_{4}As]^{-}$ anion (**2**) (Cy = cyclohexyl) with Me₂SiCl₂ produced mixtures of products, from which no pure materials could be isolated. However, reaction of **2** [generated *in situ* from CyPHLi and As(NMe₂)₃] gives the heterocycle $[(CyP)_{3}SiMe_{2}]$ (**4**). The X-ray structures of **3a** and **4** are reported.

© 2009 Elsevier B.V. All rights reserved.

coupling into the As–As bonded dimer [(${}^{t}BuP$)₃As]₂ (Scheme 3a) [8]. However, the *intact* [(${}^{t}BuP$)₃As] framework is transferred in reactions with transition metal half-sandwich compounds. Interestingly, while the reaction of **1** with [CpFe(CO)₂Cl] gives the expected addition to the Fe centre (Scheme 3b), addition of the [(${}^{t}BuP$)₃As] unit to the Cp ligand occurs for [CpM(CO)₃Cl] (M = Mo, W) (Scheme 3c) [7a,9]. The products of the latter reaction, [C₅H₄{As(P^tBu)₃}M(CO)₃Cl], probably result from a mechanism involving initial addition to the metal (M) followed by transfer to the Cp ligand (with formal elimination of H⁻). In contrast, reactions of organic electrophiles (R–X; R = Me, X = I; R = PhCH₂, CH₂ = CHCH₂, X = Br) give the neutral triphosphanes [(${}^{t}BuP$)(${}^{t}BuPR$)₂], *via* an S_N2-type mechanism involving cleavage of the As–P bonds (Scheme 3d) [7b]. This route gives rise to a potentially broad range of new phosphane ligand frameworks.

Given the reactivity patterns described above, there is an obvious potential for the development of a general approach to neutral heterocycles of the type $[(RP)_n ER'_m]$ using reactions of $[(RP)_nAs]^-$ anions like **1** with group 13 or 14 organohalide electrophiles [group 13 R'EX₂ (E = P–Bi); group 14 R'₂EX₂; E = C–Sn; X = halogen] (Scheme 4). In the current work we have explored this potential for the first time in a study of the reactions of the anions **1** and the related five-membered anion $[(CyP)_4As]^-$ (**2**) with Me₂SiCl₂. We find, however, that the reaction of **1** with Me₂SiCl₂ in 3:2 stoichiometric ratio (suggested by analogy with reaction **d**, Scheme 3) does not produce the heterocyclic product $[({}^{t}BuP)_{3}SiMe_{2}]$ (Scheme 4, top). Instead, *intact* transfer of the $[({}^{t}BuP)_{3}As]$ unit occurs, producing a mixture of the di- and mono-substituted products $[Me_{2}Si{As}(P^{t}Bu)_{3}]_{2}$] (**3a**) and $[Me_{2}Si(Cl){As}(P^{t}Bu)_{3}]$ (**3b**) (Scheme 4, bottom). Although no solid products could be obtained from the reaction of

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.12.011

1070

the pure anion **2** with Me₂SiCl₂, a low yield of the heterocycle [(Cy-P)₃SiMe₂] (**4**) could be formed from the addition of Me₂SiCl₂ to a 3:1 mixture of CyPHLi and As(NMe₂)₃ (Scheme 5).

2. Results and discussion

The previously reported complexes $[{({}^{t}BuP)_{3}As]Li \cdot 2DABCO \cdot THF}]$ (1 · 2DABCO · THF) [DABCO = N{(CH₂)₂}] [2b] and [{(CyP)₄As}- Li-TMEDA-THF] (2-TMEDA-THF) [TMEDA = $Me_2N(CH_2)_2$] [3] were used as sources of the anions 1 and 2, respectively. The 3:2 stoichiometric reaction of Me₂SiCl₂ (1.8 mmol) with the 1.2DABCO.THF (1.2 mmol) in THF/toluene (Scheme 4, top) gives a mixture of two closely related products (3a and 3b; ca. 3:2), as revealed by an in situ ³¹P{¹H} NMR study of the reaction mixture after filtration of the LiCl precipitate (see Table 1). Both products appear as a doublet and a triplet [3a, δ-62.6{d, P(1,3)}, δ-15.7{t, P(2)} $({}^{1}J_{P-P} = 159 \text{ Hz}); 3b, \delta-63.4 \{d, P(1,3)\}, \delta-13.5 \{t, P(2)\} ({}^{1}J_{P-P} = 156 \text{ Hz})],$ consistent with presence of P₃ units in both products. The similarity of the chemical shifts and the coupling constants involved suggests that **3a** and **3b** are closely related chemically. Based on this, and the later full characterisation of the major product **3a** as the di-substituted species $[Me_2Si{As(P^tBu)_3}_2]$, the minor isomer (**3b**) is most likely to be the mono-substituted species [Me₂Si(Cl){As (P^tBu)₃}]. This conclusion is also roughly consistent with fact that an excess of **1** was used in this initial reaction. Unfortunately, no further characterisation of **3b** (or **3a**) by mass spectroscopy was possible owing to air-sensitivity. However, even changing the reaction stoichiometry to 1:1 resulted in the formation of a mixture of 3a and 3b. Noticeably, although the chemical shifts of the central P atoms within the P_3As ring units of **3a** and **3b** [P(2)] are similar to those present in alkali metal complexes of the anion 1 (δ –15.7 and δ -13.5 in **3a** and **3b**, respectively), the terminal P atoms [P(1,3)] are significantly deshielded (δ –62.6 and –63.4 in **3a** and **3b**; *cf* δ -73.6 to -89.9 in alkali metal complexes of 1) [2]. This increase in chemical shift is synonymous with a reduction in the partial charge of the [(^tBuP)₃As] units in **3a** and **3b**, resulting from the formation of covalent As-Si bonds. Storage of the reaction solution at

3CyPHLi + As(NMe₂)₃ toluene Cy - P Me Me I Cy 4

-20 °C gave a 23% yield of light-yellow crystals of **3a**, which was spectroscopically- and structurally-characterised. However, repeated attempts to isolate **3b** using various reaction stoichiometries and conditions failed. The isolation of **3a** as the product was confirmed by ³¹P{¹H} spectroscopy at room temperature (in d₈-THF). Interestingly, the ¹H NMR spectrum of **3a** (in benzene) shows three doublets in the ^{*t*}Bu region (ratio 1:1:1), consistent with the adoption of a rigid molecular conformation in solution in which the three ^{*t*}Bu groups are magnetically inequivalent. This is not altogether unexpected bearing in mind the sterically congested nature of the solid-state molecular structure (Fig. 1), which is likely to result in restricted rotation of the Si–As bonds. Table 1 summarises the ³¹P NMR spectroscopic data on the new compounds **3a**, **3b** and **4**.

A number of reactions of **2**-TMEDA-THF with R_2SiCl_2 (R = Me, Ph) were undertaken. Several unidentified products were observed by *in situ* ³¹P{¹H} NMR spectroscopy. However, irrespective of the solvent or reaction conditions, no solid products could be isolated. A further problem which limited the extent of these studies was

Table 1 Summary of $^{31}P\{^{1}H\}$ NMR data for the new compounds $3a,\,3b$ and 4.

Compound	Chemical shift (δ) (coupling constant, J)
3a	-62.6 [d, P(1,3)], -15.7 [t, P(2)] (¹ J _{P-P} = 159 Hz)
3b	-63.4 [d, P(1,3)], -13.5 [t, P(2)] $({}^{1}l_{P=P} = 156$ Hz)
4	-97.6 [d, P(1,3)], -44.8, [t, P(2)] (${}^{1}J_{P-P}$ = 128 Hz)

the fact that the starting material 2. TMEDA. THF, although the most easily prepared source of the anion 2, is only isolated in relatively low yield from the 3:1 reaction of CyPHLi with As(NMe₂)₃ in the presence of TMEDA/THF and is difficult to purify (taking several weeks to crystallize). We therefore investigated the in situ generation of the anion **2** via the 3:1 reaction of CyPHLi with $As(NMe_2)_3$ in TMEDA/THF. An in situ ³¹P{¹H} spectroscopic study of this reaction mixture does indeed show the presence of significant amounts of the [(CyP)₄As][−] anion, in addition to a number of other unidentified species. Reaction of this solution at -78 °C with an excess of Me₂SiCl₂ gave a precipitate of LiCl. The in situ NMR spectrum of the filtered solution clearly shows the presence of $[(CvP)_3SiMe_2]$ (4) as a principal product of the reaction (see Table 2). Crystalline **4** was isolated in 10% yield after storage of the reaction solution at -20 °C. The room temperature ³¹P{¹H}NMR spectrum of **4** shows the expected triplet [δ –44.8, P(2)] and doublet [δ –97.6, P(1,3)] $(^{1}J_{P-P} = 128 \text{ Hz})$. These resonances are distinctly different from those found for either 3a or 3b, providing preliminary evidence of the presence of a very different (P₃Si as opposed to P₃As) ring unit in **4**. It is not certain how the four-membered P₃Si ring of **4** is formed in this reaction. However, it can be noted that no intermediate [(CyP)₃As]⁻anion could be observed in the *in situ* reaction mixture of CyPHLi with As(NMe2)3, prior to the addition of Me₂SiCl₂. Thus, it appears that the four-membered ring of 4 is generated from the observed intermediate five-membered anion $[(CyP)_4As]^-$ (2). The observation that the reaction of Ph₂SiCl₂ with CyPHLi does not generate 4 (only the Si₂P₂ ring compound trans- $[Ph_2SiPCy]_2$ [8] further supports the view that $As(NMe_2)_3$ is vital to the formation of 4, presumably because it is responsible for the formation of P-P bonds before electrophilic ring opening occurs with Me₂SiCl₂.

The low-temperature [180(2) K] X-ray structure of **3a** confirms the essential features ascertained from spectroscopic analysis. The molecular structure consists of two [(^{t}BuP)₃As] ring units which are bridged by a Me₂Si group (Fig. 1). The structure provides final confirmation that nucleophilic attack of the [(^{t}BuP)₃As]⁻ anion at the silicon centre occurs in this case, as opposed to electrophilic ring opening. The bridging Si atom exhibits a distorted tetrahedral geometry [range of angle at Si(1) 101.69(7)–115.9(2)°], while the acute angles at the As centres [82.95(7)–98.53(7)°] a large degree of *p*-orbital character within the bonds involved. The mean planes

Fig. 1. Molecular structure of the di-substituted product **3a**. H-atoms have been omitted for clarity. Key bond lengths (Å) and angle (°); P(1)–P(2) 2.215(2), P(2)–P(3) 2.223(3), P(1)–As(1) 2.346(2), P(2)–As(1) 2.342(2), As(1)–Si(1) 2.358(2), P(4)–P(6) 2.221(3), P(5)–P(6) 2.216(2), P(4)–As(2) 2.350(2), P(5)–As(2) 2.340(2), As(2)–Si(1) 2.363(2), P(1)–P(3)–P(2) 88.90(9), P(3)–P(1)–As(1) 86.77(8), P(3)–P(2)–As(1) 86.70(9), P(1)–As(1)–P(2) 82.95(7), P(1)–As(1)–Si(1) 97.25(7), P(2)–As(1)–Si(1) 97.52(7), P(4)–P(6)–P(5) 89.30(9), P(6)–P(5)–As(2) 86.86(8), P(6)–P(4)–As(2) 86.50(8), P(4)–As(2)–P(5) 83.40(7), P(4)–As(2)–Si(1) 98.53(7), P(5)–As(1)–Si(1) 96.33(7), As(1)–Si(1)–As(2) 101.69(7) [range of other angles at Si 106.7(2)–115.9(2)], mean puckering of the P₃As rings 140 (about the P "P vectors).

Table 2	
Details of the data collections and structural solutions of 3a and 4 .	

Compound	3a	4
Chemical formula	C ₂₆ H ₆₀ As ₂ P ₆ Si	C ₂₀ H ₃₉ P ₃ Si
Formula weight	736.49	400.51
Crystal system	triclinic	monoclinic
Space group	ΡĪ	P2(1)/m
Unit cell dimensions		
a (Å)	9.4278(2)	5.934(2)
b (Å)	13.5822(3)	15.006(4)
<i>c</i> (Å)	16.7416(4)	13.576(3)
α (°)	113.4493(9)	
β(°)	91.6253(9)	100.74(3)
γ (°)	95.4497(10)	
V (Å ³)	1952.69(8)	1187.7(6)
Ζ	2	2
$\rho_{\rm calc} ({\rm Mg/m^3})$	1.253	1.120
μ (Mo K $lpha$) (mm $^{-1}$)	2.002	0.302
Reflections collected	23 800	2505
Independent reflections (R _{int})	5592	1735
	(0.080)	(0.045)
R_1 , $wR_2 [I > 2\sigma(I)]$	0.052, 0.133	0.052, 0.120
R_1 , wR_2 (all data)	0.081, 0.149	0.091, 0.140

Data in common; $\lambda = 0.71073$ Å, T = 180(2) K.

of the two P₃As ring units are orientated roughly perpendicularly to each other largely in order to minimise steric congestion between the ^tBu and Me groups across the bridge. A further effect of this alignment of the P₃As rings is the reduction of potential repulsion between the lone-pairs on the As centres (which are roughly perpendicular to each other). The As–Si (mean 2.36 Å), P–As (mean 2.34 Å) and P–P (mean 2.22 Å) bonds in **3a** are typical of single bonds of these types [10]. While the puckering of the [(^tBuP)₃As] ring units in **3a** (dihedral angle of 140° about the P…P vectors of the P₃As rings) is similar to that found in the structures a range of compounds containing neutral and anionic [(RP)₃As] units; most notably in the As–As bonded dimer [(^tBuP)₃As]₂ [11]. The conformation of the [(^tBuP)₃As] ring units in **3a** and related compounds is (not surprisingly) largely influenced by steric rather than electronic factors.

The structure of **4** is that of a four-membered, P_3Si heterocycle of crystallographic *Cs* symmetry (Fig. 2), and is closely related to the previously reported tin(IV) heterocycle [(^tBuP)₃Sn^tBu₂] [12].

Fig. 2. Molecular structure of the P₃Si heterocycle **4**. H-atoms have been omitted for clarity. Key bond lengths (Å) and angle (°); P(1)–P(2) 2.236(2), P(1)–Si(1) 2.274(2), P(1)–P(2)–P(1A) 91.21(8), P(2)–P(1)–Si(1) 81.28(6), P(1)–Si(1)–P(1A) 89.28(8), puckering of P₃Si ring 134.7 (about the P(1)⁻P(1A) vector).

Nonetheless, **4** is the first example of a heterocycle containing a P_3Si ring unit, although related five-membered P_4Si and P_4Ge systems have been reported previously [13]. As in the structure of **3a**, the P–Si [2.274(2) Å] and P–P [2.236(2) Å] bonds are as expected for single bonds [10]. Like [(^{t}BuP)₃Sn $^{t}Bu_2$] [12] and [(RP)₃As]⁻ anions [2], the heterocyclic ring of **4** is puckered [dihedral angle of 134.7° at the P(1)…P(1A) vector].

3. Conclusions

The results presented in this paper show that the reactions of $[(RP)_nAs]^-$ anions with main group electrophiles (in this case Me_2SiCl_2) can provide access to a range of new heterocyclic species. The reaction characteristics observed in this study, nucleophilic substitution in the case of **2** and apparent electrophilic ring opening in the case of **4**, have been seen previously in studies of the interaction of the $[(^{T}BuP)_{3}As]^-$ anion with transition metal complexes and organic electrophiles (see Scheme 3). Further studies with main group metal complexes should be of interest, especially where lower oxidation state metal halides are involved.

3. Experimental

3.1. General experimental procedures

All compounds described in this paper are air- and moisture sensitive. Preparations were performed on a double-manifold vacuum line under argon atmosphere. Products were isolated and stored with the aid of a nitrogen-filled glove box (Saffron type β), equipped with Cu and molecular sieve columns in order to remove O_2 and moisture (respectively) from the atmosphere. [{(^tBuP)₃As]Li·2DABCO·THF] (**1**·2DABCO·THF) and [{(CyP)₄As}Li· TMEDA·THF] (2·TMEDA·THF) were prepared as crystalline samples for further reactions according to the literature procedures. Me₂SiCl₂ (Aldrich) was used as supplied commercially. TMEDA (Aldrich) was dried over Na and stored under argon. In situ ³¹P NMR studies were undertaken by placing ca. 0.8 ml of the reaction solutions within a Wilmad 528PP (thin-walled) NMR tube containing d₆-acetone capillary to obtain a lock. All ¹H and ³¹P $\{^{1}H\}$ and fully-coupled NMR spectra were recorded using a Bruker DPX 500 MHz NMR spectrometer. ³¹P NMR spectra were referenced to an external standard of 85% H₃PO₄/D₂O, while ¹H NMR spectra were referenced internally to the solvent peaks. Elemental (C, H, N) analyses were obtained using an Exeter CE-440 Elemental Analyser. P analysis was obtained using spectrophotometric methods. Samples for analysis (1–2 mg) were placed in pre-weighed, airtight aluminium boats in the glove box prior to analysis.

Synthesis of **3a**; Me₂SiCl₂ (0.22 ml, 1.8 mmol) was added to a solution of **2**·2DABCO-THF (0.80 g, 1.2 mmol) in toluene (30 ml) and THF (30 ml) at room temperature. The resulting solution was allowed to stir for *ca*. 20 h, resulting in a yellow solution and a white precipitate. The solution was filtered through Celite and the solvent partially removed under vacuum to generate a saturated solution (*ca*. 30 ml remaining). Storage of the solution at $-20 \,^{\circ}$ C afforded colourless crystals of **3a**. Yield 0.42 g (23%). M.p. decomp. >185 $^{\circ}$ C. ³¹P{¹H} (161.98 MHz, +25 $^{\circ}$ C, d₈-THF), δ = -62.6 (d, 2P), -15.7 (t, P) (¹*J*_{P-P} = 159 Hz). ¹H NMR (400.16 MHz, +25 $^{\circ}$ C, d₆-benzene), δ = 1.26 (d, 18H, ^rBu, ³*J*_{P-H} = 12.2 Hz), 1.24 (d, 18H, ^rBu, ³*J*_{P-H} = 12.8 Hz), 1.17 (d, 18H, ^rBu, ³*J*_{P-H} = 13.0 Hz), 1.01 (s, 6H, SiMe₃). Calculated for **3a**, C, 42.4; H 8.2; cald. for **3a**, C 41.1, H, 7.1.

Synthesis of **4**; ^{*n*}BuLi (8.0 ml, 1.5 mol dm⁻³ in hexanes, 12.0 mmol) was added dropwise to a stirred solution of CyPH₂ (1.6 ml, 12.0 mmol) in toluene (30 ml) was cooled to -78 °C. Stirring at room temperature for 1 h gave a yellow precipitate of the lithiate. The mixture was cooled to -78 °C and a solution of As(NMe₂)₃ in toluene (2.0 ml, 2.0 mol dm⁻³, 4.0 mmol). After stirring for 24 h at room temperature, Me₂SiCl₂ (1.47 ml, 12.0 mmol, excess) was added dropwise to the resulting orange solution at -78 °C. After stirring for 48 h a yellow solution was produced. Reduction of the volume of this solution under vacuum gave a precipitate which was heated back into solution. Storage of the solu-

3.2. X-ray crystallographic studies of synthesis of 2 and 4

Data for both complex were collected on a Nonius Kappa CCD diffractometer and solved by direct methods and refined by full-matrix least squares on F^2 [14].

4. Supplementary material

CCDC 756885 and 756886 contain the supplementary crystallographic data for **3a** and **4**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http:// www.ccdc.cam.ac.uk/data_request/cif.

References

- [1] A.D. Hopkins, J.A. Wood, D.S. Wright, Coord. Chem. Rev. 216 (2001) 155.
- [2] (a) [(^{*}BuP)₃As]⁻ anion M.A. Beswick, N. Choi, A.D. Hopkins, M. McPartlin, M.E.G. Mosquera, P.R. Raithby, A. Rothenberger, D. Stalke, A.E.H. Wheatley, D.S. Wright, J. Chem. Soc., Chem. Commun. (1998) 2485;
 (b) A. Bashall, M.A. Beswick, N. Choi, A.D. Hopkins, S.J. Kidd, Y.G. Lawson, M.E.G. Mosquera, P.R. Raithby, A.E.H. Wheatley, J.A. Wood, D.S. Wright, J. Chem. Soc., Dalton Trans. (2000) 479.
- [3] [(CyP)₄As]⁻ anion A. Bashall, F. García, A.D. Hopkins, J.A. Wood, M. McPartlin, A.D. Woods, D.S. Wright, J. Chem. Soc., Dalton Trans. (2003) 1143.
- [4] M.A. Beswick, N. Choi, C.N. Harmer, A.D. Hopkins, M. McPartlin, D.S. Wright, Science 281 (1998) 1500.
- 5] R.J. Less, R.L. Melen, V. Naseri, D.S. Wright, Chem. Commun. (2009) 4929.
- [6] A. Schisler, P. Lönnecke, U. Huniar, R. Ahlrichs, E. Hey-Hawkins, Angew. Chem., Int. Ed. Engl. 40 (2001) 4217.
 [7] (a) A. Bashall, A.D. Hopkins, M.J. Mays, M. McPartlin, J.A. Wood, A.D. Woods,
- D.S. Wright, Chem. Soc., Dalton Trans. (2000) 1825; (b) A.R. Armstrong, N. Feeder, A.D. Hopkins, M.J. Mays, D. Moncrieff, J.A. Wood, A.D. Woods, D.S. Wright, J. Chem. Soc., Chem. Commun. (2000) 2483.
- [8] F. García, Ph.D. Thesis, Cambridge University, 2002.
- [9] J.A. Wood, Ph.D. Thesis, Cambridge University, 2000.
- [10] Search of the Cambridge Crystallographic data base [F.H. Allen, Acta Crystallogr., Sect. B58 (2002) 380] using VISTA to Conquest [J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr., Sect. B58 (2002) 389] and Vista to visualize data (search date, December, 2009).
- [11] D. Fenske, C. von Hanische, Z. Anorg. Allg. Chem. 623 (1997) 1040.
- [12] T. Breem, D.W. Stephan, Organometallics 16 (1997) 365.
- [13] K.-F. Tebbe, M. Feher, Acta Crystallogr., Sect. 40C (1984) 1879;
 D. Bonquet, H.-D. Hausen, W. Schwarz, G. Heckman, H. Bonder, Z. Anorg. Allg. Chem. 621 (1995) 1358;
 D. Bonquet, H.-D. Hausen, W. Schwarz, G. Heckman, H. Bonder, Z. Anorg. Allg. Chem. 622 (1996) 1167;

H. Bonder, B. Schuster, W. Schwarz, K.W. Klinkhammer, Z. Anorg. Allg. Chem. 625 (1999) 699.

[14] G.M. Sheldrick, shelx-97, Göttingen, 1997.